Ancestral Genome Reconstruction on Whole Genome Level

نویسندگان

  • Bing Feng
  • Lingxi Zhou
  • Jijun Tang
چکیده

Comparative genomics, evolutionary biology, and cancer researches require tools to elucidate the evolutionary trajectories and reconstruct the ancestral genomes. Various methods have been developed to infer the genome content and gene ordering of ancestral genomes by using such genomic structural variants. There are mainly two kinds of computational approaches in the ancestral genome reconstruction study. Distance/event-based approaches employ genome evolutionary models and reconstruct the ancestral genomes that minimize the total distance or events over the edges of the given phylogeny. The homology/adjacency-based approaches search for the conserved gene adjacencies and genome structures, and assemble these regions into ancestral genomes along the internal node of the given phylogeny. We review the principles and algorithms of these approaches that can reconstruct the ancestral genomes on the whole genome level. We talk about their advantages and limitations of these approaches in dealing with various genome datasets, evolutionary events, and reconstruction problems. We also talk about the improvements and developments of these approaches in the subsequent researches. We select four most famous and powerful approaches from both distance/event-based and homology/adjacency-based categories to analyze and compare their performances in dealing with different kinds of datasets and evolutionary events. Based on our experiment, GASTS has the best performance in solving the problems with equal genome contents that only have genome rearrangement events. PMAG++ achieves the best performance in solving the problems with unequal genome contents that have all possible complicated evolutionary events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ancestral Genome Reconstruction in Bacteria

The rapid accumulation of numerous sequenced genomes has provided a golden opportunity for ancestral state reconstruction studies, especially in the whole genome reconstruction area. However, most ancestral genome reconstruction methods developed so far only focus on gene or replicon sequences instead of whole genomes. They rely largely on either detailed modeling of evolutionary events or edit...

متن کامل

Reconstruction of Ancestral Genome Subject to Whole Genome Duplication, Speciation, Rearrangement and Loss

Whole genome duplication (WGD) is a rare evolutionary event that has played a dramatic role in the diversification of most eucaryotic lineages. Given a set of species known to have evolved from a common ancestor through one or many rounds of WGD together with a set of genome rearrangements, and a phylogenetic tree for these species, the goal is to infer the pre-duplicated ancestral genomes. We ...

متن کامل

Prediction of Contiguous Regions in the Amniote Ancestral Genome

We investigate the problem of inferring contiguous ancestral regions (CARs) of the genome of the last common ancestor of all extant amniotes, based on the currently sequenced and assembled amniote genomes as ingroups and three teleost fish genomes as outgroups. We combine a methodological framework using conserved syntenies computed from whole genome alignments of amniote species together with ...

متن کامل

Inferring Ancestral Chloroplast Genomes with Inverted Repeat

Genome evolution is shaped not only by nucleotide substitutions, but also by structural changes including gene and genome duplications, insertions/deletions and gene order rearrangements. Reconstruction of phylogeny based on gene order changes has been limited to cases where equal gene content or few deletions can be assumed. Since conserved duplicated regions are present in many Chloroplast ge...

متن کامل

Breakpoint graphs and ancestral genome reconstructions.

Recently completed whole-genome sequencing projects marked the transition from gene-based phylogenetic studies to phylogenomics analysis of entire genomes. We developed an algorithm MGRA for reconstructing ancestral genomes and used it to study the rearrangement history of seven mammalian genomes: human, chimpanzee, macaque, mouse, rat, dog, and opossum. MGRA relies on the notion of the multipl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017